56 lines
1.6 KiB
Markdown
56 lines
1.6 KiB
Markdown
|
# Balanced Rolls
|
|||
|
|
|||
|
1. **Roll four six-sided dice (4d6).**
|
|||
|
Example: You roll **4, 1, 5, 2**.
|
|||
|
|
|||
|
2. **Reroll any dice that show a 1, but only once per die.**
|
|||
|
- From the roll above, you reroll the **1**.
|
|||
|
- Let’s say the reroll comes up as **6**.
|
|||
|
- Now your dice results are: **4, 6, 5, 2**.
|
|||
|
|
|||
|
3. **Drop the lowest number from the four dice.**
|
|||
|
- The lowest number is **2**, so you drop it.
|
|||
|
- Your remaining numbers are **4, 6, 5**.
|
|||
|
|
|||
|
4. **Add the three remaining numbers together.**
|
|||
|
- The sum is **4 + 6 + 5 = 15**.
|
|||
|
- This is your stat value.
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
## **Additional Examples**
|
|||
|
|
|||
|
### Example 1
|
|||
|
|
|||
|
1. You roll **3, 2, 1, 6**.
|
|||
|
2. Reroll the **1**, and it comes up as **4**.
|
|||
|
- New results: **3, 2, 4, 6**.
|
|||
|
3. Drop the lowest number, which is **2**.
|
|||
|
4. Final stat: **3 + 4 + 6 = 13**.
|
|||
|
|
|||
|
### Example 2
|
|||
|
|
|||
|
1. You roll **6, 1, 1, 3**.
|
|||
|
2. Reroll the two **1s**.
|
|||
|
- First reroll: **4**.
|
|||
|
- New results: **6, 4, 1, 3**.
|
|||
|
3. Drop the lowest number, which is **1**.
|
|||
|
4. Final stat: **6 + 4 + 3 = 13**.
|
|||
|
|
|||
|
### Example 3
|
|||
|
|
|||
|
1. You roll **5, 1, 1, 1**.
|
|||
|
2. Reroll one of the **1s** (you only reroll **1** die per roll).
|
|||
|
- The reroll comes up as **6**.
|
|||
|
- New results: **5, 6, 1, 1**.
|
|||
|
3. Drop the lowest number, which is **1**.
|
|||
|
4. Final stat: **5 + 6 + 1 = 12**.
|
|||
|
|
|||
|
---
|
|||
|
|
|||
|
### **Key Points to Remember**
|
|||
|
|
|||
|
- You reroll **only one die showing a 1** per roll of 4d6.
|
|||
|
- The lowest number from the four dice is always dropped after rerolling.
|
|||
|
- This method gives you a higher chance of generating above-average stats compared to rolling straight 3d6.
|